Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway.

نویسندگان

  • Sergio R Filipe
  • Alexander Tomasz
  • Petros Ligoxygakis
چکیده

The Drosophila immune system is able to discriminate between classes of bacteria. Detection of Gram-positive bacteria involves a complex of two pattern recognition receptors: peptidoglycan recognition protein SA (PGRP-SA) and Gram-negative binding protein 1 (GNBP1). These activate the Toll signalling pathway. To define the cell wall components sensed by the host, we used highly purified peptidoglycan fragments of two principal Gram-positive bacterial pathogens Staphylococcus aureus and Streptococcus pneumoniae. We report that in both peptidoglycans, the minimal structure needed to activate the Toll pathway is a muropeptide dimer and that the free reducing end of the N-acetyl muramic acid residues of the muropeptides is essential for activity. Monomeric muropeptides were inactive and inhibitory in combination with dimers. Finally, peptidoglycan was degraded by the haemolymph of wild-type but not GNBP1 mutant flies. We suggest a model whereby GNBP1 is involved in the hydrolysis of Gram-positive peptidoglycan producing new glycan reducing ends, which are subsequently detected by PGRP-SA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway.

Innate immune recognition of microbes is a complex process that can be influenced by both the host and the microbe. Drosophila uses two distinct immune signaling pathways, the Toll and immune deficiency (Imd) pathways, to respond to different classes of microbes. The Toll pathway is predominantly activated by Gram-positive bacteria and fungi, while the Imd pathway is primarily activated by Gram...

متن کامل

Dual activation of the Drosophila toll pathway by two pattern recognition receptors.

The Toll-dependent defense against Gram-positive bacterial infections in Drosophila is mediated through the peptidoglycan recognition protein SA (PGRP-SA). A mutation termed osiris disrupts the Gram-negative binding protein 1 (GNBP1) gene and leads to compromised survival of mutant flies after Gram-positive infections, but not after fungal or Gram-negative bacterial challenge. Our results demon...

متن کامل

Drosophila Immunity: Analysis of PGRP-SB1 Expression, Enzymatic Activity and Function

Peptidoglycan is an essential and specific component of the bacterial cell wall and therefore is an ideal recognition signature for the immune system. Peptidoglycan recognition proteins (PGRPs) are conserved from insects to mammals and able to bind PGN (non-catalytic PGRPs) and, in some cases, to efficiently degrade it (catalytic PGRPs). In Drosophila, several non-catalytic PGRPs function as se...

متن کامل

Peptidoglycan Recognition Proteins: Major Regulators of Drosophila Immunity

All eukaryotic organisms have an innate immune system characterized by germ-line encoded receptors and effector molecules, which mediate detection and clearance of microbes such as bacteria, fungi, and parasites. Vertebrate animals have, in addition to innate immune responses, evolved an adaptive immune system characterized by antibodies and T-cell receptors. Insects in general and the fruit fl...

متن کامل

A Drosophila Pattern Recognition Receptor Contains a Peptidoglycan Docking Groove and Unusual L,D-Carboxypeptidase Activity

The Drosophila peptidoglycan recognition protein SA (PGRP-SA) is critically involved in sensing bacterial infection and activating the Toll signaling pathway, which induces the expression of specific antimicrobial peptide genes. We have determined the crystal structure of PGRP-SA to 2.2-A resolution and analyzed its peptidoglycan (PG) recognition and signaling activities. We found an extended s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EMBO reports

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 2005